امروز ۲۸ اردیبهشت، سالروز تولد عمر خیام نیشابوری همهچیزدان، فیلسوف، ریاضیدان، ستارهشناس و رباعیسرای ایرانی در دوره سلجوقی است. در اینجا نگاهی گذرا به برخی از زمینههای شهرت خیام در حیطه ریاضیات میاندازیم:
خیام در زمینه جبر شهرت دارد و اصلاحات زیادی را در این زمینه انجام داده است، یکی از فعالیتهای برجسته وی حل معادلات درجه سوم و محاسباتی است که در زمینه هندسه اقلیدسی انجام داده است. س.ا. کانسوا میگوید: «در تاریخ ریاضی سدههای ۱۱ و ۱۲ میلادی، و شاید هم بتوان گفت در تمام سدههای میانه، حکیم عمر خیام متولد نیشابور خراسان نقش بِسزایی داشتهاست.»
جورج سارتن (George Sarton) با نام بردن از خیام به عنوان یکی از بزرگترین ریاضیدانان قرون وسطی چنین مینویسد:
خیام اول کسی است که به تحقیق منظم علمی در معادلات درجات اول و دوم و سوم پرداخته، و طبقهبندی تحسینآوری از این معادلات آوردهاست، و در حل تمام صور معادلات درجه سوم منظماً تحقیق کرده، و به حل (در اغلب موارد ناقص) هندسی آنها توفیق یافته، و رسالهٔ وی در علم جبر، که مشتمل بر این تحقیقات است، معرف یک فکر منظم علمی است؛ و این رساله یکی از برجستهترین آثار قرونوسطایی و احتمالاً برجستهترین آنها در این علم است.
یکی دیگر از آثار ریاضی خیام رسالة فی شرح ما اشکل من مصادرات اقلیدس است. او در این کتاب اصول موضوعهٔ هندسهٔ اقلیدسی اصل موضوعهٔ پنجم اقلیدس را دربارهٔ قضیهٔ خطوط متوازی که شالودهٔ هندسهٔ اقلیدسی است، مورد مطالعه قرار داد و اصل پنجم را اثبات کرد. به نظر میرسد که تنها نسخه کامل باقیمانده از این کتاب در کتابخانهٔ لایدن در هلند قرار دارد. خیام در این کتاب نسبت به اصول هندسهٔ اقلیدسی که صدها سال کتاب درسی سراسر دنیا بود، شک کرد. باید قبول کرد که ایجاد هندسهٔ غیراقلیدسی برای آن دوره بسیار زود بوده است؛ زیرا تمامی مسائل آن زمان با استفاده از هندسهٔ اقلیدسی قابل حل بودند. بیش از ۷۰۰ سال بعد، همان روش خیام مبنای کار لباچفسکی (۱۷۹۲–۱۸۵۶ میلادی) در ساختن هندسهٔ غیراقلیدسی قرار گرفت که با فاصلهٔ کمی مورد استفادهٔ اینشتین (۱۹۵۵–۱۸۷۹ میلادی) قرار گرفت.
در نیمهٔ نخست سدهٔ هیجدهم میلادی، ساکری پایه نظریهٔ خود را دربارهٔ خطوط موازی بر مطالعهٔ همان چهارضلعی دو قائمهٔ متساویالساقین که خیام پنداشته بود قرار میدهد و کوشش میکند که پنداشتهشدههای حاده و منفرجه بودن دو زاویهٔ دیگر را رد کند. درکتاب دیگری از خیام که اهمیت ویژهای در تاریخ ریاضیات دارد رسالهٔ مشکلات الحساب (مسائلی در حساب) هرچند خود این رساله هرگز پیدا نشد ولی خیام خود به این کتاب اشاره کردهاست و ادعا میکند قواعدی برای بسط دوجملهای (a+b) به توان n کشف کرده و اثبات ادعایش به روش جبری در این کتاب است. بنابرین از دیگر دستآوردهای وی موفقیت در تعیین ضرایب بسط دو جملهای (بینوم نیوتن) است که البته تا سدهٔ قبل نامکشوف مانده بود و به احترام سبقت وی بر اسحاق نیوتن در این زمینه در بسیاری از کتب دانشگاهی و مرجع این دو جملهایها «دو جملهای خیام-نیوتن» نامیده میشوند. نوشتن این ضرایب به صورت منظم مثلث خیام-پاسکال را شکل میدهد که بیانگر رابطهای بین این ضرایب است.
به هر حال قواعد این بسط را تا n=12 طوسی (که بیشترین تأثیر را از خیام گرفتهبود) در کتاب «جوامع الحساب» آوردهاست. روش خیام در به دست آوردن ضرایب منجر به نامگذاری مثلث حسابی این ضرایب به نام مثلث خیام شد، انگلیسی زبانها آن را به نام مثلث پاسکال میشناسند که البته خدشهای بر پیشگامی خیام در کشف روشی جبری برای این ضرایب نیست.
خیام در مقام ریاضیدان و ستارهشناس پژوهشها و نوشتههای مهمی دارد. از جمله آنها رسالة فی البراهین علی مسائل الجبر و المقابله است که در آن از جبر عمدتاً هندسی خود برای حل معادلات درجه سوم استفاده میکند. او معادلات درجه دوم را از روشهای هندسی اصول اقلیدس حل میکند و سپس نشان میدهد که معادلات درجه سوم با قطع دادن مقاطع مخروطی با هم قابل حل هستند. برگن باور دارد که که «هر کس که ترجمهٔ انگلیسی جبر خیام (به توسط کثیر) را بخواند استدلالات خیام را بس روشن خواهد یافت و نیز، از نکات بسیار جالب توجهی در تاریخ انواع گوناگون معادلات مطلع خواهد شد.» مسلم است که خیام در رسالههایش از وجود پاسخهای منفی و موهومی در معادلات آگاهی نداشتهاست و جواب صفر را نیز در نظر نمیگرفتهاست.
همچنین یکی از برجستهترین کارهای خیام را میتوان سر و سامان دادن گاهشماری ایران در زمان وزارت خواجه نظامالملک، که در دورهٔ پادشاهی ملکشاه سلجوقی (۴۲۶–۵۹۰ هجری قمری) بود، دانست. وی بدین منظور مدار گردش کرهٔ زمین به دور خورشید را تا ۱۶ رقم اعشار محاسبه نمود.
«سیارک ۳۰۹۵ عمر خیام»، سه هزار و نود و پنجمین سیارک کشف شده است که به افتخار این ستارهشناس ایرانی، به نام «عمر خیام» نامگذاری شده است.